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ABSTRACT 

 

Collisions between vehicles and pedestrians continue to occur at a high rate each year, resulting in several 

thousand pedestrian injuries and deaths in the United States alone. In addition to the natural 

environmental factors (i.e. precipitation, lighting, temperature, etc.), factors related to the infrastructure in 

which pedestrians walk impact the safety performance of a given roadway segment. The objective of this 

paper is to identify infrastructural elements which contribute to pedestrian-vehicle collisions. For this 

purpose, data from NASS-GES (National Automotive Sampling System - General Estimates System) was 

analyzed using structural equation modeling (SEM). The corresponding approach allows grouping 

multiple exogenous factors contributing to pedestrian collisions into groups (i.e. dimensions) consisting 

of multiple variables providing a more comprehensive analysis of the safety of roadway features. The 

findings may allow the avoidance of undesired/dangerous design standards adopted by 

traffic/transportation engineers through altering the surrounding physical environment (like adding 

artificial light to dark roadways) and thus providing better protection for pedestrians.  
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1. Introduction and Motivation 1 

Pedestrian collisions impact individuals from all age groups and from different geographic 2 

locations. Walking is a mode of transportation used by almost everyone at some point in their lives, and 3 

many pedestrians use travel paths that conflict with vehicular pathways.  Accordingly, the nature of 4 

pedestrian travel entails some risk, primarily from the proximity of vehicles. Although most pedestrians 5 

never experience collisions with vehicles, these crashes can be life altering, and sometimes fatal. The 6 

resulting damages from these collisions are felt by drivers and pedestrians alike, both physically and 7 

emotionally. In the United States, where many safety measures have already been put into effect, the 8 

NHTSA (National Highway Traffic Safety Administration) has estimated that 4,743 pedestrians were 9 

killed and 76,000 pedestrians were injured in 2012 (1). These numbers indicate that continued efforts in 10 

the field of traffic safety are needed in order to protect pedestrians from vehicular collisions.  11 

Multiple approaches have been adopted to increase pedestrian safety. Among the most popular of 12 

these approaches, there are: pedestrian education, vehicle modification, and infrastructural alterations (2). 13 

Vehicle modification has received increasing attention throughout the last decade (2). However, even 14 

with vast technological improvements made to new vehicles, there are older “non-modified” vehicles that 15 

remain on the road. Pedestrian education, which seems to be the most simple and cost effective approach 16 

to improve pedestrian safety, has been shown to be successful with children. However, results are less 17 

promising regarding the effectiveness of pedestrian education for adults (3, 4). There are no apparent 18 

downfalls to pedestrian education, but more effective solutions must be pursued in order to increase safety 19 

for pedestrians of all age groups. Infrastructure alterations can successfully improve pedestrian safety (2). 20 

In order to have a positive influence on pedestrian safety, it is essential to identify not only the core 21 

infrastructure elements that are associated with pedestrian-vehicle collisions; additional factors 22 

contributing to the increased exposure to pedestrian collision risk must be recognized for a more 23 

comprehensive safety analysis. 24 

Given the above approaches and the suggested limitations, the objective of this paper is to 25 

identify elements of the roadway infrastructure which contribute to pedestrian-vehicle collisions. Data 26 

from police reported pedestrian-vehicle collisions that occurred throughout the United States in 2011 and 27 

2012 was analyzed using structural equation modeling (SEM). SEM allows identifying factors that lead to 28 

a decrease in pedestrian safety while grouping the corresponding exogenous observable variables into 29 

different dimensions. The data set was provided by NASS - GES (National Automotive Sampling System 30 

- General Estimates System), and variables relating to infrastructure and flow conditions (such as speed 31 

limit, number of lanes, traffic flow, and type of intersection) were utilized. Many studies that have 32 

examined the effect of roadway infrastructure on pedestrian safety aggregate their data (5, 6 and 7). In 33 

this paper, the data was disaggregated so that factors associated with each collision location were 34 

separately considered. Additionally, no demographic information was taken into account. While many 35 

studies in the past have looked at the effects of demographic and socioeconomic variables on pedestrian 36 

safety, the main focus of this paper is to identify the various infrastructure elements, traffic flow 37 

characteristics, and environmental and impairment related variables that play a role in pedestrian safety.   38 

To realize the stated objective, the specific research tasks to be achieved in this study are as 39 

follows: 1) to identify relevant variables from police accident reports related to pedestrian-vehicle 40 

collisions and to build the corresponding data points; 2) to run factor analysis to group variables; 3) to 41 

apply structural equation modeling techniques to the “filtered” data points; 4) to identify variables with 42 

the most influence on pedestrian safety. The literature related to pedestrian-vehicle collisions is presented 43 

in Section 2, the adopted modeling approach (i.e. SEM) and the corresponding data are offered in Section 44 
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3. Section 4 includes the numerical analysis and a discussion of the results. The concluding remarks and 45 

the future research needs are presented in Section 5. 46 

 47 

2. Background 48 

 Multiple studies have been conducted in order to determine the factors contributing to pedestrian-49 

vehicle collisions. Most of these studies focus on particular cities (i.e. New York City, Montreal, San 50 

Francisco, and Baltimore) in order to narrow the amount of data involved and to form conclusions that are 51 

relevant to the city in question. Such specific results can be used to improve future planning of pedestrian 52 

filled areas. Moreover, the majority of these studies group collisions that have occurred within small, well 53 

defined parts of the city, such as a census tract, zip code zone, police district, etc. (5, 6 and 8). Such pre-54 

classification scheme is adopted in order to take into account population demographic characteristics and 55 

land-use features. This type of area-level study gives a broad overview of collisions that occur within a 56 

particular area as opposed to focusing on the specific geometric characteristics of collision sites.  57 

Many commonly accepted factors contributing to pedestrian collisions are identified in the 58 

aforementioned area-level studies, while other variables’ influence on collision has not yet been totally 59 

verified. Some of the most commonly identified variables include: Individual factors, like age, gender, 60 

and socioeconomic status (9, 10), and race (10). Environmental factors, like traffic volume (7, 11, 12) 61 

vehicle speed (13), street type and design (13, 2), and land use (12).  62 

Most area level studies take into account variables relating to infrastructure as well as population 63 

information. For example, (7) considered demographic and environmental correlates in their study of 64 

pedestrians in San Francisco. They use a spatial autocorrelation corrected regression model to determine 65 

factors associated with pedestrian traffic injuries in 1990. Their study uses census tracts to aggregate data, 66 

and they use a geographic information system to map locations of pedestrian injuries. The variables used 67 

in their study include: demographic factors, like gender, age, marital status, education, income and 68 

unemployment, and environmental features, like high traffic flow, complex roadway systems, greater 69 

population densities and alcohol availability. Results of their study show that pedestrian injury rates are 70 

associated with traffic flow, population density, age composition of the local population, unemployment, 71 

gender and education. Furthermore, availability of alcohol was directly related to pedestrian injury 72 

collisions in which the pedestrian had been drinking alcohol. 73 

Similarly, the area-level study conducted by (6), based on census tracts, of pedestrian collisions in 74 

San Francisco uses multivariate regression modelling to identify risk variables. They include numerous 75 

variables about street characteristics (traffic volume, intersections, residential streets, arterial streets with 76 

and without public transit, freeways, and highways), land use characteristics (commercial, industrial, 77 

neighborhood commercial, residential, higher density residential, residential neighborhood commercial, 78 

and land area), population characteristics (employees, residents, age 65 and older, age 17 and under, 79 

living below the poverty level last year, unemployed), and commute behaviors (workers commuting by 80 

walking and workers commuting by public transit). They find that traffic volume, arterial streets without 81 

public transit, proportions of land area zoned for neighborhood commercial use and residential-82 

neighborhood commercial use, land area, employee population, resident population, proportions of people 83 

living in poverty, and proportion of people aged 65 and over are all statistically significant predictors of 84 

pedestrian-vehicle collisions.  85 

(5) use negative binomial regression models in their area-level study of new York City. In order 86 

to provide some insight into the accuracy of different area levels, they use two different sizes of focus 87 

areas, one based on zip code and the other based on census tracts. Variables about socio-demographics, 88 
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land use, transit, intersections, and road characteristics were included. They conclude that the proportion 89 

of multi-lane roads is positively associated with pedestrian collisions. Additionally, they report that a 90 

smaller aggregation level (census tract as opposed to zip code zone) provides “greater explanatory power 91 

for variations in accident frequencies.”  92 

The area-level approach takes into account a broad range of variables while focusing on a 93 

particular geographical area. A more specific approach, such as that used by (14) and (15) focuses on the 94 

characteristics of each specific collision site. (14) consider the effect of infrastructure, speed limits, and 95 

pedestrian characteristics on the severity of pedestrian collisions in Montreal using ordered logit 96 

regression techniques. Most of the data was provided by the city of Montreal and Quebec’s Automobile 97 

Insurance Board.  One difference in this study (compared to others mentioned above) is that it tries to 98 

capture the infrastructure and design characteristics by examining different buffer zone sizes around the 99 

site of the collision. This allows the authors to consider various infrastructural characteristics that are 100 

present in each of the buffer zones. The authors included the following variables: injury severity (no 101 

injury, minor injury, major or fatal injury), day of week (week or weekend), median income in census 102 

tract, population density in census tract, number of schools in buffer zone, total number of intersections in 103 

buffer zone, total number of cul-de-sacs in buffer zones, connectivity (number of intersections ÷ (number 104 

of intersections + cul-de-sacs)) in buffer zone, percentage residential/commercial land use, vehicle 105 

(automobile, motorcycle/moped, vans/trucks/buses, emergency vehicle), daylight, road condition (poor or 106 

other), road type (local, arterial, highway), parks, hospitals, vehicle driving direction (straight, backing 107 

up, turning left, turning right), slope of roadway, visibility (object, weather, good), intersection (whether 108 

collision occurred at intersection or not), total bus and metro stops, schools within zone. Their results 109 

show that the main factors associated with injury severity levels were roadway type, vehicle movement, 110 

accident location, vehicle type, environmental conditions, population density, road connectivity, and land 111 

use mix. 112 

A similar study that uses disaggregated data conducted by (15) examines the impact of personal 113 

and environmental characteristics on the severity of injuries sustained in pedestrian-vehicle collisions. 114 

The data (from Maryland motor vehicle accident reports) covers a 4 year period, in Baltimore, Maryland.  115 

A generalized ordered probit model is used to determine which variables are positively correlated with 116 

injury severity. The level of injury was considered in order to lessen the effect of low-injury collisions 117 

that may occur more frequently in pedestrian dense areas, while drawing attention to more severe injuries 118 

sustained in crashes that occur in lower density areas. Each crash was geocoded to the nearest 119 

intersection, so very specific information regarding collision location was not taken into account. The 120 

researchers used a 0.25 mile buffer zone around each location to take environmental variables into 121 

account. The following variables were considered (most gathered from accident reports, some gathered 122 

from US Census, Maryland land use, and Baltimore City public schools): severity of injury (no injury, 123 

injury, fatality), age (0-15 years, 16-64 years, 64+), sex, clothing type (dark, other), signal disobedience, 124 

substance present, daylight, weather (inclement or fair), road condition (defects or good), pedestrian 125 

location (crosswalk or not), vehicle (automobile, motorcycles/mopeds, emergency, trucks/vans/buses), 126 

road facility type (local, arterial/higher order facility), transit access (number of stops within 0.25 mile 127 

zone), connectivity (number of intersections ÷ (number of intersections + cul-de-sacs) in 0.25 mile zone), 128 

population density (in census block of where collision occurred), median income (in census block of 129 

where collision occurred), schools (within 0.25 mile zone), percentage commercial/residential land use 130 

(within 0.25 mile zone). The results indicate that substance use and crosswalk usage affect the severity of 131 

pedestrian injury. The researchers conclude that more detailed data about crash environments are needed 132 
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for this type of analysis to guide policy recommendations. The authors suggest including variables such 133 

as lighting, line of sight, and other pedestrian safety elements. 134 

All of the previously described studies have considered population variables to some degree. (16) 135 

focus more exclusively on the infrastructure. Their study identifies pedestrian-vehicle collision hotspots 136 

in Vancouver, Canada. Data was gathered from the Insurance Corporation of British Columbia and the 137 

British Columbia Trauma Registry over a 6 year period, from 2000 to 2005. Crash locations were mapped 138 

using ArcGIS 9.2 and geo-referenced to either an intersection or a midblock. Locations with 5 or more 139 

incidents (including “near misses”) were considered hot spots. Elements of the infrastructure within 100m 140 

of incident location were recorded by researchers. The researchers took into account the following 141 

variables: long block, bus stop, curb parking, crosswalk, visual obstruction, signage, number of lanes, left 142 

or right turning bans, bars, retail, schools, median, exclusive turns, and calming measures (like speed 143 

bumps, road narrowing, and reduced speed limits). The authors found a high correlation between the 144 

presence of bars and pedestrian collisions, which support similar findings made by (7). However, the 145 

presence of schools did not seem to influence their results, although different studies have concluded the 146 

schools increase the risk of collision (17, 18). The authors hypothesize that many safety measures are 147 

effectively used near schools.  148 

The literature indicates that several studies have been conducted to identify environmental factors 149 

associated with pedestrian-vehicle collisions. Most of the previously done work uses aggregated data, 150 

including geographic and population variables, while also focusing on a particular city. The studies that 151 

use disaggregated data are all specific to particular cities as well. In this case, the authors intend to focus 152 

on the impact of the infrastructure on pedestrian-vehicle collisions, and the NASS GES data allows for an 153 

analysis of collisions that occurred throughout the United States. A description of the statistical model 154 

and the available data are described in Section 3, followed by more rigorous statistical analysis of the 155 

data, including factor analysis and model results in Section 4. Lastly, concluding remarks are offered in 156 

Section 5  157 

 158 

3. Statistical Model and Data 159 

Data: 160 

Data was acquired from NASS GES (National Automotive Sampling System General Estimates System), 161 

which allowed information from pedestrian-vehicle collisions from across the United States to be used. 162 

NASS GES data is taken from a nationally representative probability sample selected from all police 163 

accident reports. The NASS GES database contains hundreds of variables relating to several different 164 

types of traffic collisions. In order to obtain the specific information relevant to pedestrian-vehicle 165 

collisions, the data files were filtered and then combined so that only pertinent variables were included. 166 

The variables included in this study were taken from the following NASS GES files: the Accident File 167 

(type of intersection, weather and light condition), the Vehicle File (driver drinking in vehicle, traffic-way 168 

description, number of lanes and speed limit), the Person File (injury severity), the “Drimpair” File 169 

(driver impairment), and the “Nmimpair” File (pedestrian impairment). Additional information unrelated 170 

to the details of the collision itself were taken into account, including region of the country in which the 171 

collision occurred (Northeast, Midwest, South, West), year of occurrence, and weight. The weight 172 

variable indicates how many times a particular collision is likely to have occurred throughout the country. 173 

This number was used to increase the number of data points so that the true number of collisions that 174 

occurred could be taken into account as opposed to just those accidents that were randomly selected by 175 

NASS GES. Although using the weight to determine the total number of pedestrian-vehicle collisions that 176 



7 

Porter, Schorr, and Hamdar 

 
 

occur each year is imperfect compared to collecting police accident reports from every single collision, it 177 

is as accurate as possible considering the available nation-wide data. The convergence and the statistical 178 

significance of the resulting structural model should bring insights into the correctness of the adopted 179 

technique in constructing the data set in question. The two most recent years of data (2011 and 2012) 180 

were considered for the study, resulting in a total of 52,224 pedestrian-vehicle collisions. This number is 181 

lower than the actual number of collisions that occurred because collisions with missing data were 182 

entirely omitted from the study so that only those with complete information were taken into account. 183 

Table 1 summarizes the data by year, and Table 2 describes each variable that was considered, including 184 

exogenous, endogenous, and other variables.   185 

 186 

Table 1: NASS GES Total Collisions per Year in 2011 and 2012 187 

Collisions by year 

Year Total collisions Total pedestrian injuries/fatalities 

2011 21994 16278 

2012 30229 29221 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 
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Table 2: Description of Model Variables 220 

Exogenous variable description 

Exogenous variable  Description Details 

Infrastructure 

X1 (Int. Legs) Type of intersection 

1: Not an intersection  

2: Traffic circle or roundabout  

3: T or Y intersection 

4: 4-way intersection  

5: Five-point or more 

X2 (Lanes) Number of lanes 1-7 Lanes 

X3 (Speed Limit) Speed limit (mph) Speed Limit Divided by 10  

X4 (Flow) 
Flow conditions just prior to 

collision 

1: One-Way Traffic  

2:  Two-Way traffic 

Environmental 

X5 (Weather) 
Dummy variable corresponding to 

weather 

0: Clear  

1: Visual impairment (precipitation, 

fog, smoke, etc.) 

X6 (Lighting) 
Dummy variable corresponding to 

lighting conditions 

0: Light 

1:Dark 

Distraction/Impairment 

X7 (Drinking) 
Dummy variable corresponding to 

driver drinking in vehicle 

0: Not drinking in vehicle 

1: Drinking in vehicle 

X8 (Impaired) 

Dummy variable corresponding to 

driver impairment (drugs, fatigued, 

physical impairment, etc.) 

0: Not impaired 

1: Impaired 

X10 (P Impaired) 

Dummy variable corresponding to 

pedestrian impairment (drugs, 

fatigued, physical impairment, etc.) 

0: Not impaired 

1: Impaired 

Endogenous variable description 

Endogenous variable Description Details 

Y1 (MaxP_Inj) Severity of injury sustained 

0: No injury 

1: Possible injury/ injury severity 

unknown 

2: Non-incapacitating injury 

3: Incapacitating injury 

4: Fatal injury 

Y2 ( N P Inj) Number of pedestrian injured 0-3 per collision 

Other variable description 

Region Location of collision by region 

1: Northeast (PA, NJ, NY, NH, VT, 

RI, MA, ME, CT)  

2: Midwest (OH, IN, IL, MI, WI, 

MN, ND, SD, NE, IA, MO, KS)  

3: South (MD, DE, DC, WV, VA, KY, 

TN, NC, SC, GA, FL, AL, MS, LA, 

AR, OK, TX)  

4: West (MT, ID, WA, OR, CA, NV, 

NM, AZ, UT, CO, WY, AK, HI) 

 221 

 222 

 223 
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Application of structural equation model: 224 

This subsection describes the application of structural equation modeling (SEM) to the previously 225 

described pedestrian-vehicle collision data. This approach has been used by (19, 20, and 21) to describe 226 

various traffic related aggressiveness and safety indexes. For example, (21) used SEM to analyze 227 

attributes of signalized and unsignalized intersections to identify which elements were most influential in 228 

terms of intersection safety. Previously, (19) created a similar safety index using SEM to describe driver 229 

behavior in interrupted versus uninterrupted flow. The success of structural equation modeling in 230 

describing the traffic scenarios mentioned above provides the motivation for applying SEM to pedestrian-231 

vehicle collisions. 232 

Structural equation modeling is particularly useful because it makes use of latent (unobserved) 233 

variables (22). Latent variables can be used to describe large data sets without actually having to consider 234 

every variable independently (22). Latent variables describe multiple observed variables grouped in one 235 

dimension and are therefore capable of reducing the complexity of the data set. Factor analysis is used to 236 

statistically group large sets of variables. For this project, a factor analysis was conducted using Statistical 237 

Analysis Software (SAS) in order to gain insights as to potential variable groupings (23). The factor 238 

analysis resulted in the grouping shown below in Table 3. Bolded values in Table 3 are indicative of 239 

refined potential dimensional placements as suggested by the factor scores. 240 

 241 

Table 3: Factor Analysis Results 242 

Factor Structure 

  Factor1 Factor2 Factor3 

Intersection Legs -0.00284 0.74761 -0.47938 

Relation to Roadway -0.15944 0.23479 0.00849 

Lighting 0.00845 -0.25612 0.46591 

Weather -0.02453 -0.09225 0.05241 

# of Occupants -0.01724 -0.02293 0.00090 

Driver Drinking 0.75977 -0.04502 0.07251 

Flow Conditions 0.01749 -0.06755 -0.03589 

Number of Lanes -0.03196 0.02265 0.19259 

Speed Limit 0.00335 -0.21729 0.45397 

Control Device -0.00209 0.73935 -0.46582 

Driver Impaired 0.77032 -0.02266 0.00074 

Driver Distracted 0.02064 0.13637 -0.18982 

Pedestrian Impaired 0.10441 -0.12414 0.32598 

 243 

 244 

Ultimately, these suggested groupings were refined based on logical connections and the statistical 245 

significance of various structural models that were estimated using the LISREL software (24). The final 246 

grouping of the variables is based on the following three categories: 1) Infrastructure variables, 2) 247 

Environmental variables, and 3) Impairment variables. The use of these well-defined categories resulted 248 

in the most statistically significant structural model. Figure 1, shown below, illustrates the use of LISREL 249 

software to identify a converging model using the three previously described latent variables.  250 

 251 
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 252 
Figure 1: Structural Equation Model Corresponding to the NASS-GES Pedestrian-Vehicle Collisions 253 

 254 

The results summarizing the model are shown below in Table 4A. While Chi-squared test 255 

experience problems due to the large number of data points (25), other relevant goodness of fit statistics 256 

were used to indicate model significance. Goodness of fit was based on the root mean square error of 257 

approximation (RMSEA) (25). The converging model resulted in an RMSEA of 0.036 with a 90% 258 

confidence interval of 0.034 to 0.037, well below the threshold of 0.05 which indicates statistical 259 

significance (25, 26). Furthermore, the standardized root mean square residual of 0.029 was below the 260 

accepted value of 0.08 (24). Additionally, the Goodness of Fit Index (0.99) and the Adjusted Goodness of 261 

Fit Index (0.98) further support the statistical significance of the model. Considering an alpha value of 262 

0.05, all t-values between -1.96 and 1.96 are considered significant, indicating that each variable’s t-value 263 

was significant, as shown in the table below in Table 4B.  264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 
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Table 4A: Details on the Model Measurement Equations 277 

Model measurement equations 

Equation Errorvar R
2 
Value 

Structural model 

Index = 0.27*L1 + 0.33*L2 + 0.29*L3 0.98 0.016 

MaxP Inj = 0.82*Index 0.24 0.74 

N P Inj = 0.31*Index 0.072 0.56 

Exogenous measurement model 

Int Legs = 0.49*L1 1.66 0.13 

Flow = 0.0035*L1 0.038 0.00033 

Lanes =  - 0.079*L1 0.99 0.0063 

Spd Lmt =  - 0.41*L1 0.73 0.19 

Weather =  0.039*L2 0.16 0.0095 

Lighting = 0.12*L2 0.062 0.19 

Drinking = 0.026*L3 0.014 0.046 

Impaired =  0.019*L3 0.021 0.017 

P Impaired =  0.17*L3 0.073 0.28 

 278 

Table 4B: T-Values and Significant Error Covariance Terms 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

4. RESULTS AND ANALYSIS  300 

 301 

General analysis:  302 

Based on the structural model displayed in Figure 1, higher values of the safety index are 303 

indicative of a decrease in pedestrian safety, as both the number of pedestrians injured and the maximum 304 

pedestrian injury severity level increase.  High composite contributions to the index indicate variables 305 

T-values 

Variables Value 

L1/Intersection Legs 56.74 

L1/Number of lanes -14.38 

L1/Flow Condition 3.34 

L1/Speed Limit -61.93 

L2/Weather 15.10 

L2/Lighting 20.07 

L3/Driver Drinking 30.30 

L3/Driver Impairment 18.54 

L3/Pedestrian Impairment 37.04 

L1/Index 6.37 

L2/Index 8.20 

L3/Index 11.79 

Index/Number of pedestrian injuries 58.74 

Error covariance terms 

Variables Value 

Flow Condition/Intersection Legs -0.02 

Speed limit/Number of lanes 0.13 

Driver Impairment/Driver Drinking 0.011 
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with greater impact on pedestrian safety. The composite contribution is calculated by multiplying the 306 

coefficient of variation (the amount in which a variable changes throughout the data set) by the 307 

contribution to the safety index from a one standard deviation change in a variable.  This value is 308 

paramount for analysis as it considers both how often a variable changes throughout the data set and the 309 

contribution to the safety index from a change in that variable.   310 

 311 

Table 5: Variable Specific Statistical Measures 312 

Variable Average 
Standard 

Deviation 

Coefficient of 

Variation 

Deviation 

Contribution 

Composite 

Contribution 

L1: Intersection Legs 2.4796 1.3801 0.5566 2.8166 1.5676 

L1: Number of Lanes 2.6140 0.9984 0.3819 -12.6376 -4.8267 

L1: Flow Condition 1.9604 0.1950 0.0995 55.7055 5.5401 

L1: Speed Limit 3.3574 0.9487 0.2826 -2.3138 -0.6538 

L2: Lighting 0.0830 0.2759 3.3241 2.2989 7.6418 

L2: Weather 0.1998 0.3998 2.0015 10.2517 20.5191 

L3: Driver Drinking 0.0148 0.1206 8.1692 4.6386 37.8937 

L3: Driver Impaired 0.0213 0.1445 6.7735 7.6045 51.5089 

L3: Pedestrian Impaired 0.1148 0.3188 2.7769 1.8751 5.2071 

 313 

Starting with the infrastructure dimension (L1), positive valued coefficients for intersection legs 314 

and flow condition indicate that as intersections become more complex and traffic flow goes from one 315 

way to two ways, there is a negative impact on pedestrian safety. The complexity of navigating through 316 

traffic for pedestrians in situations involving intersections with numerous intersection legs and multi-317 

directional flow is shown by the model. These findings are supported by both (13) and (2) who found that 318 

street type and design are influential in terms of pedestrian safety. The remaining two infrastructure 319 

variables, number of lanes and speed limit, both have negative coefficients. The negative values indicate 320 

that as these values increase, there is a positive effect on pedestrian safety. The negative influence of the 321 

speed limit contradicts the findings made by (13).  However, the negative coefficient of these two 322 

variables makes sense when considering wide roads with vehicles travelling at high speeds. Situations 323 

like this are often discouraging to pedestrians who wish to cross the roadway, which may explain why the 324 

coefficients are negative.  325 

 The infrastructure dimension is particularly revealing because it takes into account aspects of the 326 

physical roadway that have been designed in a certain way. In areas where there is a high amount of 327 

pedestrian traffic, this model supports decreasing the number of intersection lanes and limiting vehicular 328 

flow conditions. For planning purposes, this model is capable of indicating which factors must be the 329 

most carefully considered with regard to their impact on pedestrian safety.  330 

 The next dimension (L2) includes environmental characteristics of the roadway, namely lighting 331 

condition and weather. Both weather and lighting are coded as dummy variables with 0 meaning light/dry 332 

conditions and 1 meaning dark/visual impairment due to precipitation. The composite distribution shown 333 

in Table 5 indicates that weather has a more significant impact on pedestrian safety than lighting. The 334 

effect of inclement weather on pedestrians has been explored by (27) in the context of increasing signal 335 

timing, but not directly related to pedestrian-vehicle collisions. Additionally, (15) recommend paying 336 

attention to the effect of lighting conditions on pedestrian-vehicle safety. As shown by the model 337 

described here, darkness is a significant contributor to decreased pedestrian safety. 338 
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 Although the environmental variables are less easy to control during the design stage of roadway 339 

construction, there are still some options that can be taken to limit the impact of these variables on 340 

pedestrian safety. For example, lighting conditions can be improved by street lights. Visual impairment 341 

due to weather conditions is more difficult to change; however it is important for pedestrians to be aware 342 

of their increased risk of collision while precipitation is falling.  343 

 The last dimension (L3) corresponds to pedestrian and driver impairment. All three of the 344 

observed variables in the category, including pedestrian impairment, driver impairment, and driver 345 

consuming alcohol in the vehicle are attributed with a decrease in pedestrian safety. Although pedestrian 346 

impairment has the least significant composite contribution in this group, it is still influential. The model 347 

indicates the driver impairment and alcohol consumption are the most critical with regard to pedestrian 348 

safety, with composite contribution values that greatly exceed the contributions from every other variable. 349 

The negative impact on pedestrian safety due to alcohol has been reported by many other studies 350 

including (7 and 28). 351 

 The effect of impaired driving on overall roadway safety is not a new discovery, and many 352 

solutions have already been enacted through law. This model illustrates that impaired driving is not only 353 

dangerous to others travelling in vehicles, but also that driver impairment has a hugely negative effect on 354 

overall pedestrian safety. Driver impairment is more influential than pedestrian impairment in the model 355 

because collisions involving impaired drivers are more likely to lead to severe injury than collisions 356 

involving non-impaired drivers and impaired pedestrians. 357 

 358 

Regional analysis:  359 

One of the main benefits of the SEM approach is that it allows for a ranking system to be 360 

developed based on the structural model produced.  From the structural model described above, the four 361 

regions of the country previously mentioned in Table 2 can be ranked based on the three dimensions 362 

considered for analysis as well as the pedestrian safety index as a whole.  Table 6, below, displays the 363 

average dimensional value for each region as well as the average value of the pedestrian safety index. The 364 

table indicates that variable group L1, infrastructure variables, is the most influential in terms of 365 

pedestrian safety in region 1, which corresponds to the Northeast of the United States. Variable group L2, 366 

environmental variables, is most influential in region 2 of the country, which is the Midwest. Lastly, 367 

variable group L3, impairment variables, is the most strongly represented in region 3, which represents 368 

the Southern United States. It is interesting to note the different influences of particular variables in the 369 

various regions of the country. Although differences exist, it is clear from the table that all three groups of 370 

variables are influential in all four quadrants of the country, indicating that the solutions suggested in 371 

studies that focus on particular cities may be applicable on a more widespread scale.  372 

Table 6: Regional Specific Latent Variables Values 373 

Region L1 L2 L3 INDEX 

1 144.5770 1.2708 0.3662 146.2141 

2 142.8773 2.5115 0.5154 145.9043 

3 139.2650 2.0344 0.8083 142.1077 

4 143.1763 1.3573 0.7412 145.2749 

 374 

The above table shows that all four regions of the country have similar safety indexes, although it can be 375 

seen that region 1 has the highest safety index value, and therefore it is the least safe region for 376 

pedestrians. Since this region corresponds to the Northeastern United States, it is possible that the 377 

increase is due to high population density. The relatively small differences in the safety indexes for each 378 
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region of the country suggest that the observed variables that were taken into account are significant in all 379 

four regions.  380 

 The convergent model that was produced from NASS GES data indicates that infrastructural and 381 

behavioral changes can greatly increase pedestrian safety on roadways. Furthermore, since the data was 382 

not specific to a particular city it is likely that widespread solutions are a possibility for improving 383 

pedestrian safety in all four regions of the United States. 384 

 385 

5. Conclusion 386 

This study made use of structural equation modeling to identify specific parameters that are 387 

influential in terms of pedestrian safety, particularly with regard to pedestrian-vehicle collisions.  388 

Demographic variables were purposefully excluded from the study so that the findings could be used to 389 

identify changes that can be made to the infrastructure as well as driver behaviors that are damaging to 390 

pedestrian safety. Since demographic variables cannot be easily changed, their effect on pedestrian-391 

vehicle collisions was not taken into account. The structural equation model identified three main 392 

variables groups with large influences over pedestrian safety, including infrastructure variables, 393 

environmental variables, and impairment variables. The results produced in this study were created using 394 

data from across the country in an effort to make the conclusions as broadly applicable as possible. Future 395 

work could identify similar variables in a smaller area in order to verify that the observed variables are as 396 

influential on a small scale as they were in this model.  397 
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